Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSS-EDNN.3
Paper Title EXTRACTING CAUSAL VISUAL FEATURES FOR LIMITED LABEL CLASSIFICATION
Authors Mohit Prabhushankar, Ghassan AlRegib, Georgia Institute Of Technology, United States
SessionSS-EDNN: Special Session: Explainable Deep Neural Networks for Image/Video Processing
LocationArea B
Session Time:Wednesday, 22 September, 14:30 - 16:00
Presentation Time:Wednesday, 22 September, 14:30 - 16:00
Presentation Poster
Topic Special Sessions: Explainable Deep Neural Networks for Image/Video Processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Neural networks trained to classify images do so by identifying features that allow them to distinguish between classes. These sets of features are either causal or context dependent. Grad-CAM is a popular method of visualizing both sets of features. In this paper, we formalize this feature divide and provide a methodology to extract causal features from Grad-CAM. We do so by defining context features as those features that allow contrast between predicted class and any contrast class. We then apply a set theoretic approach to separate causal from contrast features for COVID-19 CT scans. We show that on average, the image regions with the proposed causal features require 15% less bits when encoded using Huffman encoding, compared to Grad-CAM, for an average increase of 3% classification accuracy, over Grad-CAM. Moreover, we validate the transfer-ability of causal features between networks and comment on the non-human interpretable causal nature of current networks.