Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSS-MIA.7
Paper Title SepUnet: Depthwise Separable Convolution Integrated U-Net for MRI Reconstruction
Authors Soheil Zabihi, Elahe Rahimian, Concordia University, Canada; Amir Asif, York University, Canada; Arash Mohammadi, Concordia University, Canada
SessionSS-MIA: Special Session: Deep Learning and Precision Quantitative Imaging for Medical Image Analysis
LocationArea A
Session Time:Wednesday, 22 September, 14:30 - 16:00
Presentation Time:Wednesday, 22 September, 14:30 - 16:00
Presentation Poster
Topic Special Sessions: Deep Learning and Precision Quantitative Imaging for Medical Image Analysis
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Accelerating Magnetic Resonance Imaging (MRI) acquisition process is a critical and challenging medical imaging problem as basic reconstructions obtained from the undersampled k-space often exhibit blur or aliasing effects. Despite its significance and recent advancements in the field of deep neural networks (DNNs), development of deep learning-based MRI reconstruction algorithms is not yet flourished due to unavailability of public and large datasets. The recently introduced large-scale fastMRI dataset is posed to change this state of affairs, however, existing DNN solutions developed based on fastMRI require learning a large number of parameters rendering their practical application limited due to the strict low-latency requirements of real-time MRI acquisition. In this paper, we aim to address this drawback and target reducing the computational cost associated with single-coil reconstruction task. More specifically, the paper proposes a novel deep model referred to as the SepUnet architecture achieving significant reduction in the required number of parameters while maintaining high accuracy. Performance of the proposed SepUnet architecture is evaluated based on the official test dataset from fastMRI illustrating accuracy improvement in comparison to its published counterparts while requiring significantly reduced number of trainable parameters (i.e., the SepUnet architecture is much faster and lighter than its counterparts).