Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDARS-2.9
Paper Title INTERACTIVE OBJECT SEGMENTATION WITH DYNAMIC CLICK TRANSFORM
Authors Chun-Tse Lin, Wei-Chih Tu, Chih-Ting Liu, Shao-Yi Chien, National Taiwan University, Taiwan
SessionARS-2: Image and Video Segmentation
LocationArea I
Session Time:Monday, 20 September, 15:30 - 17:00
Presentation Time:Monday, 20 September, 15:30 - 17:00
Presentation Poster
Topic Image and Video Analysis, Synthesis, and Retrieval: Image & Video Mid-Level Analysis
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract In the interactive segmentation, users initially click on the target object to segment the main body and then provide corrections on mislabeled regions to iteratively refine the segmentation masks. Most existing methods transform these user-provided clicks into interaction maps and concatenate them with image as the input tensor. Typically, the interaction maps are determined by measuring the distance of each pixel to the clicked points, ignoring the relation between clicks and mislabeled regions. We propose a Dynamic Click Transform Network (DCT-Net), consisting of Spatial-DCT and Feature-DCT, to better represent user interactions. Spatial-DCT transforms each user-provided click with individual diffusion distance according to the target scale, and Feature-DCT normalizes the extracted feature map to a specific distribution predicted from the clicked points. We demonstrate the effectiveness of our proposed method and achieve favorable performance compared to the state-of-the-art on three standard benchmark datasets.