Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLR-APPL-IVASR-6.6
Paper Title OPENING DEEP NEURAL NETWORKS WITH GENERATIVE MODELS
Authors Marcos Vendramini, Universidade Federal de Minas Gerais, Brazil; Hugo Oliveira, University of São Paulo, Brazil; Alexei Machado, Jefersson dos Santos, Universidade Federal de Minas Gerais, Brazil
SessionMLR-APPL-IVASR-6: Machine learning for image and video analysis, synthesis, and retrieval 6
LocationArea D
Session Time:Wednesday, 22 September, 08:00 - 09:30
Presentation Time:Wednesday, 22 September, 08:00 - 09:30
Presentation Poster
Topic Applications of Machine Learning: Machine learning for image & video analysis, synthesis, and retrieval
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Image classification methods are usually trained to perform predictions taking into account a predefined group of known classes. Real-world problems, however, may not allow for a full knowledge of the input and label spaces, making failures in recognition a hazard to deep visual learning. Open set recognition methods are characterized by the ability to correctly identifying inputs of known and unknown classes. In this context, we propose GeMOS: simple and plug-and-play open set recognition modules that can be attached to pretrained Deep Neural Networks for visual recognition. The GeMOS framework pairs pretrained Convolutional Neural Networks with generative models for open set recognition to extract open set scores for each sample, allowing for failure recognition in object recognition tasks. We conduct a thorough evaluation of the proposed method in comparison with state-of-the-art open set algorithms, finding that GeMOS either outperforms or is statistically indistinguishable from more complex and costly models.