Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDTEC-1.7
Paper Title Low-Rank Regularized Joint Sparsity for Image Denoising
Authors Zhiyuan Zha, Bihan Wen, Nanyang Technological University, Singapore; Xin Yuan, Nokia Bell Labs, United States; Jiantao Zhou, University of Macau, China; Ce Zhu, University of Electronic Science and Technology of China, China
SessionTEC-1: Restoration and Enhancement 1
LocationArea G
Session Time:Tuesday, 21 September, 13:30 - 15:00
Presentation Time:Tuesday, 21 September, 13:30 - 15:00
Presentation Poster
Topic Image and Video Processing: Restoration and enhancement
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Nonlocal sparse representation models such as group sparse representation (GSR), low-rankness and joint sparsity (JS) have shown great potentials in image denoising studies, by effectively exploiting image nonlocal self-similarity (NSS) property. Popular dictionary-based JS algorithms apply convex JS penalties in their objective functions, which avoid NP-hard sparse coding step, but lead to only approximately sparse representation. Such approximated JS models fail to impose low-rankness of the underlying image data, resulting in degraded quality in image restoration. To simultaneously exploit the low-rank and JS priors, we propose a novel low-rank regularized joint sparsity model, dubbed LRJS, to enhance the dependency (i.e., low-rankness) of similar patches, thus better suppress independent noise. Moreover, to make the optimization tractable and robust, an alternating minimization algorithm with an adaptive parameter adjustment strategy is developed to solve the proposed LRJS-based image denoising problem. Experimental results demonstrate that the proposed LRJS outperforms many popular or state-of-the-art denoising algorithms in terms of both objective and visual perception metrics.