Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLR-APPL-IVSMR-1.2
Paper Title ADAPTIVE SIGNAL VARIANCES: CNN INITIALIZATION THROUGH MODERN ARCHITECTURES
Authors Takahiko Henmi, Esmeraldo Ronnie Rey Zara, Gunma University, Japan; Yoshihiro Hirohashi, Individual, Japan; Tsuyoshi Kato, Gunma University, Japan
SessionMLR-APPL-IVSMR-1: Machine learning for image and video sensing, modeling and representation 1
LocationArea C
Session Time:Tuesday, 21 September, 13:30 - 15:00
Presentation Time:Tuesday, 21 September, 13:30 - 15:00
Presentation Poster
Topic Applications of Machine Learning: Machine learning for image & video sensing, modeling, and representation
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Deep convolutional neural networks (CNNs), renowned for their consistent performance, are widely understood by practitioners that the stability of learning depends on the initialization of the model parameters in each layer. Kaiming initialization, the de facto standard, is derived from a much simpler CNN model which consists of only the convolution and fully connected layers. Compared to the current CNN models, the basis CNN model for the Kaiming initialization does not include the max pooling or global average pooling layers. In this study, we derive an new initialization scheme formulated from modern CNN architectures, and empirically investigate the performance of the new initialization methods compared to the standard initialization methods widely used today.