Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLR-APPL-IVASR-5.7
Paper Title Deep Metric Learning with Alternating Projections onto Feasible Sets
Authors Oğul Can, Yeti Z. Gurbuz, A. Aydın Alatan, Middle East Technical University, Turkey
SessionMLR-APPL-IVASR-5: Machine learning for image and video analysis, synthesis, and retrieval 5
LocationArea C
Session Time:Tuesday, 21 September, 15:30 - 17:00
Presentation Time:Tuesday, 21 September, 15:30 - 17:00
Presentation Poster
Topic Applications of Machine Learning: Machine learning for image & video analysis, synthesis, and retrieval
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Minimizers of the typical distance metric learning loss functions can be considered as "feasible points" satisfying a set of constraints imposed by the training data. We reformulate distance metric learning problem as finding a feasible point of a constraint set where the embedding vectors of the training data satisfy desired intra-class and inter-class proximity. The feasible set induced by the constraint set is expressed as the intersection of the relaxed feasible sets which enforce the proximity constraints only for particular samples (a sample from each class) of the training data. Then, the feasible point problem is to be approximately solved by performing alternating projections onto those feasible sets. Such an approach introduces a regularization term and results in minimizing a typical loss function with a systematic batch set construction where these batches are constrained to contain the same sample from each class for a certain number of iterations. The proposed technique is applied with the well-accepted losses and evaluated on three popular benchmark datasets for image retrieval and clustering. Outperforming state-of-the-art, the proposed approach consistently improves the performance of the integrated loss functions with no additional computational cost.