Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDARS-10.12
Paper Title A simple supervised hashing algorithm using projected gradient and oppositional weights
Authors Sobhan Hemati, Mohammad Hadi Mehdizavareh, Morteza Babaie, University of Waterloo, Canada; Shivam Kalra, Kimia Lab, University of Waterloo, Canada; H.R. Tizhoosh, University of Waterloo, Canada
SessionARS-10: Image and Video Analysis and Synthesis
LocationArea H
Session Time:Monday, 20 September, 15:30 - 17:00
Presentation Time:Monday, 20 September, 15:30 - 17:00
Presentation Poster
Topic Image and Video Analysis, Synthesis, and Retrieval: Image & Video Storage and Retrieval
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Learning to hash is generating similarity-preserving binary representations of images, which is, among others, an efficient way for fast image retrieval. Two-step hashing has become a common approach because it simplifies the learning by separating binary code inference from hash function training. However, the binary code inference typically leads to an intractable optimization problem with binary constraints. Different relaxation methods, which are generally based on complicated optimization techniques, have been proposed to address this challenge. In this paper, a simple relaxation scheme based on the projected gradient is proposed. To this end in each iteration, we try to update the optimization variable as if there is no binary constraint and then project the updated solution to the feasible set. We formulate the projection step as fining closet binary matrix to the updated matrix and take advantage of the closed-form solution for the projection step to complete our learning algorithm. Inspired by opposition-based learning, pairwise opposite weights between data points are incorporated to impose a stronger penalty on data instances with higher misclassification probability in the proposed objective function. We show that this simple learning algorithm leads to binary codes that achieve competitive results on both CIFAR-10 and NUS-WIDE datasets compared to state-of-the-art benchmarks.