Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDIMT-CIF-2.12
Paper Title Edge-Resolved Transient Imaging: Performance Analyses, Optimizations, and Simulations
Authors Charles Saunders, William Krska, Boston University, United States; Julián Tachella, University of Edinburgh, United Kingdom; Sheila Seidel, Boston University, United States; Joshua Rapp, Stanford University, United States; John Murray-Bruce, University of South Florida, United States; Yoann Altmann, Stephen McLaughlin, Heriot-Watt University, United Kingdom; Vivek Goyal, Boston University, United States
SessionIMT-CIF-2: Computational Imaging 2
LocationArea I
Session Time:Wednesday, 22 September, 14:30 - 16:00
Presentation Time:Wednesday, 22 September, 14:30 - 16:00
Presentation Poster
Topic Computational Image Formation: Image reconstruction and restoration
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Edge-resolved transient imaging (ERTI) is a method for non-line-of-sight imaging that combines the use of direct time of flight for measuring distances with the azimuthal angular resolution afforded by a vertical edge occluder. Recently conceived and demonstrated for the first time, no performance analyses or optimizations of ERTI have appeared in published papers. This paper explains how the difficulty of detection of hidden scene objects with ERTI depends on a variety of parameters, including illumination power, acquisition time, ambient light, visible-side reflectivity, hidden-side reflectivity, target range, and target azimuthal angular position. Based on this analysis, optimization of the acquisition process is introduced whereby the illumination dwell times are varied to counteract decreasing signal-to-noise ratio at deeper angles into the hidden volume. Inaccuracy caused by a coaxial approximation is also analyzed and simulated.