Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSS-3DPU.10
Paper Title Blockwise Temporal-Spatial Pathway Network
Authors SeulGi Hong, Min-Kook Choi, hutom, Republic of Korea
SessionSS-3DPU: Special Session: 3D Visual Perception and Understanding
LocationArea B
Session Time:Tuesday, 21 September, 15:30 - 17:00
Presentation Time:Tuesday, 21 September, 15:30 - 17:00
Presentation Poster
Topic Applications of Machine Learning: Machine Learning for 3D Image and Video Processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Algorithms for video action recognition should consider not only spatial information but also temporal relations, which remains challenging. We propose a 3D-CNN-based action recognition model, called the blockwise temporal-spatial path-way network (BTSNet), which can adjust the temporal and spatial receptive fields by multiple pathways. We designed a novel model inspired by an adaptive kernel selection-based model, which is an architecture for effective feature encoding that adaptively chooses spatial receptive fields for image recognition. Expanding this approach to the temporal domain, our model extracts temporal and channel-wise attention and fuses information on various candidate operations. For evaluation, we tested our proposed model on UCF-101, HMDB-51, SVW, and Epic-Kitchen datasets and showed that it generalized well without pretraining. BTSNet also provides interpretable visualization based on spatiotemporal channel-wise attention. We confirm that the blockwise temporal-spatial pathway supports a better representation for 3D convolutional blocks based on this visualization.