Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSS-3DPU.6
Paper Title RESIDUAL ENHANCED MULTI-HYPERGRAPH NEURAL NETWORK
Authors Jing Huang, Xiaolin Huang, Jie Yang, Shanghai Jiao Tong University, China
SessionSS-3DPU: Special Session: 3D Visual Perception and Understanding
LocationArea B
Session Time:Tuesday, 21 September, 15:30 - 17:00
Presentation Time:Tuesday, 21 September, 15:30 - 17:00
Presentation Poster
Topic Applications of Machine Learning: Machine Learning for 3D Image and Video Processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Hypergraphs are a generalized data structure of graphs to model higher-order correlations among entities, which have been successfully adopted into various researching fields. Meanwhile, HyperGraph Neural Network (HGNN) is currently the de-facto method for hypergraph representation learning. However, HGNN aims at single hypergraph learning and uses a pre-concatenation approach when confronting multi-modal datasets, which leads to sub-optimal exploitation of the inter-correlations of multi-modal hypergraphs. HGNN also suffers the over-smoothing issue, that is, its performance drops significantly when layers are stacked up. To resolve these issues, we propose the Residual enhanced Multi-Hypergraph Neural Network, which can not only fuse multi-modal information from each hypergraph effectively, but also circumvent the over-smoothing issue associated with HGNN. We conduct experiments on two 3D benchmarks, the NTU and the ModelNet40 datasets, and compare against multiple state-of-the-art methods. Experimental results demonstrate that both the residual hypergraph convolutions and the multi-fusion architecture can improve the performance of the base model and the combined model achieves a new state-of-the-art. Code is available at \url{https://github.com/OneForward/ResMHGNN}.