Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLR-APPL-IVSMR-3.11
Paper Title Progressive Neural Image Compression with Nested Quantization and Latent Ordering
Authors Yadong Lu, Department of Statistics, University of California Irvine, United States; Yinhao Zhu, Yang Yang, Amir Said, Qualcomm AI Research, Qualcomm Technologies, Inc., United States; Taco Cohen, Qualcomm AI Research, Qualcomm Technologies Netherlands B.V., United States
SessionMLR-APPL-IVSMR-3: Machine learning for image and video sensing, modeling and representation 3
LocationArea D
Session Time:Wednesday, 22 September, 14:30 - 16:00
Presentation Time:Wednesday, 22 September, 14:30 - 16:00
Presentation Poster
Topic Applications of Machine Learning: Machine learning for image & video sensing, modeling, and representation
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract We present PLONQ, a progressive neural image compression scheme which pushes the boundary of variable bitrate compression by allowing quality scalable coding with a single bitstream. In contrast to existing learned variable bitrate solutions which produce separate bitstreams for each quality, it enables easier rate-control and requires less storage. Leveraging the latent scaling based variable bitrate solution, we introduce nested quantization, a method that defines multiple quantization levels with nested quantization grids, and progressively refines all latents from the coarsest to the finest quantization level. To achieve finer progressiveness in between any two quantization levels, latent elements are incrementally refined with an importance ordering defined in the rate-distortion sense. To the best of our knowledge, PLONQ is the first learning-based progressive image coding scheme and it outperforms SPIHT, a well-known wavelet-based progressive image codec.