Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSS-3DPU.8
Paper Title A Deep Learning Method for Frame Selection in Videos for Structure from Motion Pipelines
Authors Francesco Banterle, ISTI-CNR, Italy; Rui Gong, ETH Zurich, Switzerland; Massimiliano Corsini, Fabio Ganovelli, ISTI-CNR, Italy; Luc Van Gool, ETH Zurich, Switzerland; Paolo Cignoni, ISTI-CNR, Italy
SessionSS-3DPU: Special Session: 3D Visual Perception and Understanding
LocationArea B
Session Time:Tuesday, 21 September, 15:30 - 17:00
Presentation Time:Tuesday, 21 September, 15:30 - 17:00
Presentation Poster
Topic Applications of Machine Learning: Machine Learning for 3D Image and Video Processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Structure-from-Motion (SfM) using the frames of a video sequence can be a challenging task because there is a lot of redundant information, the computational time increases quadratically with the number of frames, there would be low-quality images (e.g., blurred frames) that can decrease the final quality of the reconstruction, etc. To overcome all these issues, we present a novel deep-learning architecture that is meant for speeding up SfM by selecting frames using predicted sub-sampling frequency. This architecture is general and can learn/distill the knowledge of any algorithm for selecting frames from a video for generating high-quality reconstructions. One key advantage is that we can run our architecture in real-time saving computations while keeping high-quality results.