Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDIMT-CIF-2.4
Paper Title Compressive Covariance Matrix Estimation from a Dual-Dispersive Coded Aperture Spectral Imager
Authors Jonathan Monsalve, Miguel Marquez, Universidad Industrial de Santander, Colombia; Iñaki Esnaola, University of Sheffield, United Kingdom; Henry Arguello Fuentes, Universidad Industrial de Santander, Colombia
SessionIMT-CIF-2: Computational Imaging 2
LocationArea I
Session Time:Wednesday, 22 September, 14:30 - 16:00
Presentation Time:Wednesday, 22 September, 14:30 - 16:00
Presentation Poster
Topic Computational Imaging Methods and Models: Compressed Sensing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Compressive covariance sampling (CCS) theory aims to recover the covariance matrix (CM) of a signal, instead of the signal itself, from a reduced set of random linear projections. Although several theoretical works demonstrate the CCS theory's advantages in compressive spectral imaging tasks, a real optical implementation has no been proposed. Therefore, this paper proposes a compressive spectral sensing protocol for the dual-dispersive coded aperture spectral snapshot imager (DD-CASSI) to directly estimate the covariance matrix of the signal. Specifically, we propose a coded aperture design that allows recasting the vector sensing problem into matrix form, which enables us to exploit the covariance matrix structure such as positive-semidefiniteness, low-rank, or Toeplitz. Additionally, a low-rank approximation of the image is reconstructed using a Principal Components Analysis (PCA) based method. In order to test the precision of the reconstruction, some spectral signatures of the image are captured with a spectrometer and compared with those obtained in the reconstruction using the covariance matrix. Results show the reconstructed spectrum is accurate with a spectral angle mapper (SAM) of less than 14°. RGB image composites of the spectral image also provide evidence of a correct color reconstruction.